Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.08.20.457146

RESUMEN

SARS-CoV-2, the causative agent of the COVID-19 pandemic, drastically modifies the cells that it infects. One such effect is the activation of the host p38 mitogen-activated protein kinase (MAPK) pathway, which plays a major role in inflammation pathways that are dysregulated in severe COVID-19 cases. Inhibition of p38/MAPK activity in SARS-CoV-2-infected cells reduces both cytokine production and viral replication. Here, we applied a systems biology approach to better understand interactions between the p38/MAPK pathway and SARS-CoV-2 in human lung epithelial cells. We found several components of the p38/MAPK pathway positively and negatively impact SARS-CoV-2 infection and that p38{beta} is a required host factor for SARS-CoV-2 that acts by promoting viral protein translation in a manner that prevents innate immune sensing. Furthermore, we combined chemical and genetic perturbations of p38{beta} with quantitative phosphoproteomics to identify novel, putative p38{beta} substrates in an unbiased manner, with broad relevance beyond SARS-CoV-2 biology.


Asunto(s)
Infecciones , Síndrome Respiratorio Agudo Grave , Trastornos Cronobiológicos , COVID-19 , Inflamación
2.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.04.16.044016

RESUMEN

The emergence of novel SARS coronavirus 2 (SARS-CoV-2) in 2019 has triggered an ongoing global pandemic of severe pneumonia-like disease designated as coronavirus disease 2019 (COVID-19). To date, more than 2.1 million confirmed cases and 139,500 deaths have been reported worldwide, and there are currently no medical countermeasures available to prevent or treat the disease. As the development of a vaccine could require at least 12-18 months, and the typical timeline from hit finding to drug registration of an antiviral is >10 years, repositioning of known drugs can significantly accelerate the development and deployment of therapies for COVID-19. To identify therapeutics that can be repurposed as SARS-CoV-2 antivirals, we profiled a library of known drugs encompassing approximately 12,000 clinical-stage or FDA-approved small molecules. Here, we report the identification of 30 known drugs that inhibit viral replication. Of these, six were characterized for cellular dose-activity relationships, and showed effective concentrations likely to be commensurate with therapeutic doses in patients. These include the PIKfyve kinase inhibitor Apilimod, cysteine protease inhibitors MDL-28170, Z LVG CHN2, VBY-825, and ONO 5334, and the CCR1 antagonist MLN-3897. Since many of these molecules have advanced into the clinic, the known pharmacological and human safety profiles of these compounds will accelerate their preclinical and clinical evaluation for COVID-19 treatment.


Asunto(s)
COVID-19 , Neumonía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA